Discrete Singular Convolution Method for Numerical Solutions of Fifth Order Korteweg-De Vries Equations
نویسندگان
چکیده
منابع مشابه
Discrete Singular Convolution Method for Numerical Solutions of Fifth Order Korteweg-De Vries Equations
A new computational method for solving the fifth order Korteweg-de Vries (fKdV) equation is proposed. The nonlinear partial differential equation is discretized in space using the discrete singular convolution (DSC) scheme and an exponential time integration scheme combined with the best rational approximations based on the Carathéodory-Fejér procedure for time discretization. We check several ...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملCompacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.
Solitons play a fundamental role in the evolution of general initial data for quasilinear dispersive partial differential equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger, and the Kadomtsev-Petviashvili equations. These integrable equations have linear dispersion and the solitons have infinite support. We have derived and investigate a new KdV-like Hamiltonian partial diffe...
متن کاملA Dual-petrov-galerkin Method for Extended Fifth-order Korteweg-de Vries Type Equations
This paper extends the dual-Petrov-Galerkin method proposed by Shen [16] and further developed by Yuan, Shen and Wu [23] to several integrable and non-integrable fifth-order KdV type equations. These fifth-order equations arise in modeling different wave phenomena and involve various nonlinear terms. The method is implemented to compute the solitary wave solutions of these equations and the num...
متن کاملNumerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2013
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2013.17002